동력시스템공학회지 제25권 제4호 pp. 69-78 2021년 8월 ISSN 2713-8429(Print) ISSN 2713-8437(Online) Journal of Power System Engineering https://doi.org/10.9726/kspse.2021.25.4.069 Vol. 25, No. 4, pp. 69-78, August 2021

2.4 MW급 4행정 주기관의 부하에 따른 배기가스 특성 분석
(어로실습선 새바다호를 중심으로)Analysis of Exhaust Gas Characteristics according to the
Load of the 2.4 MW Class 4-stroke Main Engine
(Focusing on the Fishing Training Ship of the SAEBADA)

조광식*·한승훈*† ·김민재** Kwang-Sik Jo*, Seung-Hun Han*† and Min-Jae Kim**

(Received 19 July 2021, Revision received 11 August 2021, Accepted 11 August 2021)

Abstract : The engines used as the main engine of a ship vary depending on the fuel, size and output. Most of the ships are currently using internal combustion engines. This study examined the exhaust gas and air pollutants emitted by SAEBADA, the fishing training ship of Gyeongsang National University. It has a 2,427 kW main engine of Nigatta Engineering that uses marine gas oil (MGO) as fuel oil. It was measured in real time for each load. According to this measurement results, the engine of the ship is operated at an optimal load to reduce the emission concentration of air pollutants in the exhaust gas. For two days from May 13th to May 14th, 2020, a real ship emission gas measurement test was conducted on SAEBADA, the fishing training ship of Gyeongsang National University while operating the ship in four modes that were mainly composed of changes in output. The gas phase materials, particulate materials, exhaust temperature, etc., were measured. As a result of the test, the nitrogen oxide (NOx) emission of SAEBADA was Tier II level. It was found that when marine gas oil (MGO) emitted relatively less air pollutants than heavy fuel oil (HFO). In addition, it was found that the nitrogen oxide (NOx) emission in the high-load region was relatively less than in the low-load region regardless of the oil type and the aging of the engine. This may be due to the combustion state. Therefore, we intend to operate SAEBADA in an efficient and eco-friendly with the results of these real ship experiments.

Key Words: Internal combution engines, Air pollutants, Exhaust gas, Nitrogen oxide (NOx), Marine gas oil (MGO)

** 한승훈(ORCID:https://orcid.org/0000-0002-9125-7439) :	** Seung-Hun Han(ORCID:https://orcid.org/0000-0002-9125-7439)
교수, 경상국립대학교 기계시스템공학과	: Professor, Department of Mechanical System Engineering,
E-mail : shhan@gnu ac kr. Tel : 055-772-0150	Gyeongsang National University.
E-mail : siman@gnu.ac.ki, Tel : 055-772-9150	E-mail : shhan@gnu.ac.kr, Tel : 055-772-9150
*조광식(ORCID:https://orcid.org/0000-0002-7118-325X) :	*Kwang-Sik Jo(ORCID:https://orcid.org/0000-0002-7118-325X)
대학원생, 경상국립대학교 기계시스템공학과	: Graduate student, Department of Mechanical System
**김민재(ORCID:https://orcid.org/0000-0003-2632-3951) :	Engineering, Gyeongsang National University.
기숙원 부사기계기숙여구세터 하구기계여구원	**Min-Jae Kim(ORCID:https://orcid.org/0000-0003-2632-3951)
기울한, 부한가까가올한 편의, 한국가까한 10	: Engineer, Busan Machinery Research Center, Korea Institute
	of Machinery and Materials.

1. 서 론

선박의 주기관으로 사용되는 엔진은 사용연료 와 크기, 출력에 따라서 종류는 다양하다. 화력 즉 열에너지로부터 동력을 얻는 기관을 열기관(Heat Engine)이라 하고, 풍력, 수력을 이용하여 동력을 얻는 기관을 냉기관(Cold Engine)이라고 부른다. 열기관에는 증기왕복동기관(Reciprocating Steam Engine) 또는 증기터빈(Steam Turbine)과 같이 실 린더의 외부에서 연료를 연소시켜 증기를 매질로 하는 외연기관(External Combustion Engine)과 가솔 린기관 또는 디젤기관과 같이 직접 연료를 실린 더 내에 공급, 연소시켜 그때 발생하는 열에너지 (Heat Energy)를 기계일(Mechanical Work)로 변환 시키는데 가스를 매질로써 사용하는 내연기관 (Internal Combustion Engine)이 있다.^{1,2)} 현재 선박 에서 대부분 사용중인 내연기관을 동작방법으로 나누면, 4 사이클 기관(4 Stroke Cycle Engine)과 2 사이클 기관(2 Stroke Cycle Engine)이 있으며, 점 화방법에 의한 분류는 전기점화기관(Spark Ignition 압축점화기관(Compression Ignition Engine), Engine)이 있다. 사용연료에 의한 분류에는 가솔린 기관(Gasoline Engine), 디젤기관(Diesel Engine), 그 리고 가스(LNG)와 연료(Fuel)를 함께 사용할 수 있는 이중연료기관(Dual Fuel Engine)이 있다.^{3,4)} 이 밖에도 피스톤의 형상에 의한 분류로 본다면 트렁크 피스톤형 기관(Trunk Piston Type Engine), 크로스헤드형 기관(Crosshead Type Engine) 있고, 출력에 의한 분류로는 대형기관(5,000마력 이상 또는 실린더 경 500 mm 이상), 중형기관(1,000~ 5,000마력 또는 실린더 경 200~500 mm), 소형기관 (1,000마력 이하 또는 실린더 경 200 mm 이하)이 있으며, 속도에 의한 분류로는 저속기관(500 rpm 이하, 평균 피스톤 속도 6 m/s 이하), 중속기관 (500~1,000 rpm, 평균 피스톤 속도 6~9 m/s), 고속 기관(1,000 rpm 이상, 평균 피스톤 속도 9 m/s 이 상) 등 엔진의 종류에는 다양한 종류가 있다.5)

2020년 1월부터 IMO(International Maritime Organization, 국제해사기구)의 SOx 규제 강화에 따라 모든 선박은 황함량이 0.5% 미만인 연료를

사용해야 한다. IMO의 조치는 현행 3.5% 황함량 상한선을 대폭 강화한 것으로, 현재 벙커 연료의 평균 황함량인 2.5% 수준 대비 5배의 감소를 의 미한다. SOx 규제는 중고선에도 적용되는 규제이 므로 SOx 규제가 발효된 이후의 상황을 고려한 선박의 후처리장치를 설치할 수밖에 없는 상황이 되었다. 이에 따라, 해양업계에서는 IMO 규제의 준수를 위해서, Scrubber(배출가스 정화시스템, 탈 황장치)를 설치하고 고유황 연료유(HSFO, High Sulfur Fuel Oil)를 계속 사용할 수 있으며, 마린경 유(MGO, Marine Gas Oil), 또는 0.5% 미만의 초저 유황 연료유(VLSFO, Very Low Sulfur Fuel Oil)를 사용하거나, LNG로의 연료전환 등의 옵션이 있 다.6-8) 특히 선박운항에 있어서 연료비는 상당히 높은 비율인 70% 정도를 차지하므로 해운선사는 연료비로 엄청난 비용을 지불하는 관계로 연료가 격에 민감할 수밖에 없다. 그러므로 향후에 어떤 선박연료를 선택하느냐에 따라 운임경쟁력이 달 라져 해운선사의 미래를 좌지우지할 수 있게 될 것이다. 그래서 해운선사들은 친환경적이면서 가 격이 낮은 연료를 결국 선택할 수밖에는 없다고 본다 ^{9,10)}

본 시험의 목적은 마린경유(MGO, Marine Gas Oil)를 연료유로 사용하는 경상국립대학교 어로실 습선 "새바다호(2,427 kW급 주엔진, Nigatta Engineering)"가 항해 중 배출하는 배기가스 및 대 기오염물질을 부하별 실시간으로 측정하여 배기 가스상 대기 오염물질의 배출 농도를 줄여 최적 의 엔진 부하로 엔진을 효율적이고 친환경적으로 운영하고자 하는데 목적이다.

2. 대상 엔진 및 측정장치

2.1 대상 엔진

본 실선 시험에 사용된 대상 선박은 어로 실습 선 새바다호의 주기관 엔진을 사용하였고, 간략한 제원은 Table 1, 출력시험 결과는 Table 2와 같다. 주기관(Main Engine)은 기어구동식인 MC 타입의 엔진으로 연근해를 항행구역으로 삼는 중·소형 선 박에서 다수 채택되어 운항 중이다.

Engine Manufacturer	Nigata Engineering
Engine model	6L34HX
Model Year	2000
Engine type	4 stoke, Pressure charged, Water cooling type for air cooler
Cylinder number	6, In-line
Displacement (cc)	40,857
Combustion chamber type	Open chamber
Bore x Stroke (mm)	340×450
Rated Max, Power (kW) @ Rated speed (rpm)	2,471 @ 600
Compression ratio	13.3
Valve port size (mm) and number	EV: 115 x2, IV: 120 x2
Inlet valve timing (deg. CA)	Closure after BDC
Fuel injection timing (deg. CA, BTDC)	8~18
Injector valve opening pressure (MPa)	34.5±1.0

SAEBADA

Table 2 Result of Engine Power for Main Engine

Load ratio (%)	25	50	75	85	100	110
Power output (kW)	618	1236	1853	2100	2471	2718
Engine speed (rpm)	378	476	545	568	600	619
Torque (kNm)	15.6	24.8	32.5	35.3	39.3	41.9
Exhaust gas temp. (°C)	271	328	340	344	339	346
Fuel type	HFO	HFO	HFO	HFO	HFO	HFO

Table 3은 새바다호 최초 건조 시 실시한 배출 가스 인증 시험 조건이다. 배출가스 인증 시험 모 드는 E2 모드를 사용하였으며, 주기 엔진의 최대

Table 1 Specification of Main Engine for T/S 토크 조건인 2,471 kW, 600 rpm이 아닌 출력 1,221 kW, 엔진회전수 460 rpm을 기준으로 인증 시험을 수행하였고, 시험 연료는 MDO와 HFO를 사용하였다.

Table	3	Test	Condition	of	Exhaust	Gas	Emission	of
		Main	Engine					

Engine test cycle	E2
Rated speed (rpm)	460
Rated power (kW, crank shaft end)	1221
Applicable NOx regulation limit (g/kWh)	13.2
Fuel type	Diesel oil, Heavy fuel oil

Table	4	Result	of	Exhaust	Gas	Emission	Test	of
		Main E	ngi	ne				

E2 Mode	1	2	3	4	
Power (%)	1221	915.75	610.5	305.25	
Speed (%)	460	460	460	460	
Fuel flow rate (kg/h)	239.4	184.3	128.1	72.2	
Air flow rate (kg/h)	7956.5	6490.6	5362.1	4199.1	
Exhaust gas flow rate (kg/h)	8195.9	6675	5490.2	4271.4	
Exhaust gas temperature (°C)	460	420	370	285	
NOx concentration, dry (ppm)	998	991	902	464	
CO concentration, dry (ppm)	376.1	183.6	62.4	114.5	
CO ₂ concentration, dry (%)	6.52	6.17	5.17	3.69	
NOx specific (g/kWh)	10.2	11.3	12.9	10.5	
NOx emission value (g/kWh)	11.11				

Table 5 Tier Le	evel of NOx
-----------------	-------------

Tier	Ship construction	Total weighted cycle emission limit (g/kWh) n = engine's rated speed (rpm)				
	dute on or unter	n < 130	n = 130 - 1999	$n~\geq~2000$		
Ι	1 January 2000	17.0	45.n-0.2	9.8		
П	1 January 2011	14.4	44.n-0.23	7.7		
Ш	1 January 2016	3.4	9.n-0.2	2.0		

Table 4는 엔진 제조사에서 제공한 새바다호 배 출가스 인증 시험 결과이고, Table 5는 NOx 배출 기준을 나타낸다. E2 사이클을 구성하는 4개의 운 전점에 대해 배출가스 온도는 285~460℃ 사이에 있었으며, NOx 배출 계수는 11.11 g/kWh로 선박 건조 당시 NOx 배출 기준인 13.2 g/kWh 이하를 만족하였다.

2.2 실험 장치 및 대상선박의 연료

새바다호 실선 시험에서는 1종의 배기가스 분 석기와 2종의 매연 측정 장치을 사용하였으며, 각 장비의 자세한 제원은 다음과 같다.

2.2.1 시험용 연료

본 시험에서 시험용 선박 연료는 Table 6의 연 료유성상표(BDR)와 같이 MGO를 사용하였다.

Table 6 Bunker Deliver Receipt of T/S SAEBADA

	API Gravity @ 60/60°F	39-40.7
	Density g/cm ³ @ 15°C	0.822-0.834
	Acidity Total mgKOH/g	0.40 Max
	Ash mass wt%	0.02 Max
Specificati- on	Romsbottom Carbon, 10% residue mass% wt%	0.15 Max
	CAL. Cetane Index(D4737)	48.0 Min
	Viscos. Kin, @40°C mm ² /S	1.9-5.5
	Flash Poin [°] C	45-67
	Sulfur wt (ppm)	3.6-6

2.2.2 배기가스 분석기

본 시험에서 배출가스 내 CO, CO₂, NOX 및 O₂ 를 측정하기 위해 비 접촉식으로 측정 정확성이 높고 수명이 길어 가장 우수한 가스 검지 방식으 로 평가되고 있는 적외선 스펙트럼을 이용한 비 분산적외선분석법(Non-Dispersive Infrared Gas Analysis Method)을 적용하였으며, NOX와 O₂ 측정 을 위해 전자센서를 이용한 전자화학 센서법 (Electrochemical Sensor Method, EcSM)를 사용하였 다. 고농도 가스 분석용인 MRU사 NOVA prime의 주요 제원은 Table 7과 같다.

Measure- ment gas	Method measure ment	Range	Resol- ution	Accuracy
O ₂	-	025.00%	0.01%	0.2%
СО	NDIR	03,000ppm	1ppm	±15ppm or 5% reading
CO ₂	NDIR	040%	0.01%	±0.3% or 2% reading
CH ₄	NDIR	03,000ppm	1ppm	±20ppm or 2% reading
NO	EcSM	05,000ppm	1ppm	±5ppm or 5% reading
NO ₂	EcSM	01,000ppm	1ppm	±5ppm or 5% reading

Table 7 Specifications of Exhaust Gas Analyzer

2.2.3 입자상 물질 측정 장치

본 시험에서는 입자상 물질 배출량을 측정하기 위해 AVL사의 Smoke Meter 415SE와 Opacimeter 를 사용하였다. Smoke Meter 415SE는 Filter Paper Method를 사용하여 내연기관 엔진에서 배출되는 입자상 물질을 Filter Smoke Number(FSN) 및 Soot 질량의 형태로 측정하는 장치로 Filter Paper의 입 자상 물질 포집 전후 반사율 차이를 측정한다. Opacimeter는 디젤 엔진 배출가스의 Opacity를 연 속 측정할 수 있는 장비로 배출가스가 광원과 Receiver 사이를 지나가는 동안 측정되는 광 손실 량으로부터 Opacity, N(%)과 Absorption Coefficient, k(m⁻¹)을 0.1 sec의 Rise Time으로 도출할 수 있다. 각 입자상 물질 측정 장치의 주요 제원은 각각 Table 8, Table 9와 같다.

Table 8 S	specifications	of	Smoke	Meter	415SE
-----------	----------------	----	-------	-------	-------

Measurement principle	Filter paper blackening			
Measured value output	FSN (Filter Smoke Number), mg/m ³ (soot concentration)			
Measurement range	0 to 10 FSN			
Detection limit	0.002 FSN or 0.02 mg/m ³			
Repeatability	Standard deviation $1\sigma \le \pm (0.005 \text{ FSN} + 3\%)$ (a) 10 seconds intake time)			

Measurement value output	Opacity, N [%] or Absorption coefficient, k [m ⁻¹]
Measurement range	$N = 0 \cdots 100\%$ or $k = 0 \cdots 10 m^{-1}$
Measurement value resolution	0.01% opacity or 0.0025 m ⁻¹ (10 s mean value)
Zero stability	$\{0.1\% \text{ or } 0.0025 \text{ m}^{-1}\}$ for 30 min
Response time	0.1 s
Sampling rate for opacity signal	50 Hz

Table 9 Specifications of Opacimeter

3. 실험방법 및 절차

3.1 배출가스 측정 장비 및 샘플링 프로브 설치

실선 배출가스 측정 시험을 위해 배기가스 분 석기 및 입자상 물질 측정 장치를 Fig. 1과 같이 새바다호 주기 엔진의 배기 매니폴드 후단에 설 치하였다. 실선 운항 중 선박 움직임에 의해 측정 장비가 파손되는 것을 방지하기 위해 주기 엔진 을 둘러싼 가장자리 난간에 로프 등 고정장치를 이용하여 측정 장비를 고정하였다.

배기가스 샘플링 시 배기관 내부에 쌓여 있는 회(Ash) 성분이 유입되어 측정 장비를 파손하거나 측정 오류를 발생시키는 것을 방지하기 위해 Opacimeter의 샘플링 프로브는 Fig. 2와 같이 배기 관 측면에, MRU사의 배기가스 분석기와 Smoke Meter의 샘플링 프로브는 배기관 윗면에 설치하여 실험하였다.

Fig. 1 Configuration of Exhaust Gas Measurement Equipment for Main Engine

Fig. 2 Photo of Mounting the Sampling Probe

Fig. 3 Ship Performance Monitoring Device

흡기 온도 및 과급 압력은 주기 엔진에 장착된 센서를 그대로 사용하여 측정하였으며, 배출가스 계수를 계산하기 위해 필요한 엔진 회전수, 출력, 토크 등은 Fig. 3의 새바다호 선박마력측정장치 (Ship Performance Monitoring Device)의 결과값을 사용하였다.

3.2 실선 운전 조건

새바다호 실선 배출가스 측정 시험은 2020년 5 월 13일에서 2020년 5월 14일 양일간 이루어졌다. 보다 정확한 실선 배출가스 특성 평가를 위해서 는 새바다호를 해상에서 선박 엔진 배출가스 시 험모드인 ISO8178 E2 또는 E3 모드와 유사하게 운행하는 것이 바람직하나 시험 당일 기상 및 해 상 여건은 물론 실선의 운전 가능 영역을 고려할 때 모드 구현에 어려움이 있었다. 따라서 엔진 제 조사 기준 정격 출력 대신 현재 실제로 사용되고 있는 엔진 최대출력 조건인 출력 1,941 kW(엔진 제조사 제공 정격 출력의 80%) 및 엔진 회전수 (540 rpm)을 기준으로 엔진 출력을 25%, 50%,

	Power	Speed	Operation interval	Measurement duration
Unit	kW	rpm	min	min
mode 1	2,063	500	10	3
mode 2	1,547	500	10	3
mode 3	1,031	500	10	3
mode 4	516	500	10	3

Table 10 Condition of Operation Test for T/S SAEBADA

75%, 100%로 변경하면서 실선에서 배출되는 배기 가스의 양을 측정하였다.

상기 4가지 엔진 출력조건 각각에 대해 10분씩 총 40분 동안 배출가스 및 미세먼지 농도를 측정 하였으며, 엔진 출력을 유지하는 10분 중 선박 운 행이 안정화된 마지막 3분 동안의 데이터를 평균 하여 해당 엔진 출력조건의 배기가스 측정값으로 사용하였다. 실선 측정을 진행하는 동안에 기상은 크게 변하지 않았으며, 선박 운전 역시 선회 없이 직진을 유지하여 실험하였다. 새바다호 실선 배출 가스 측정은 원래 총 3번 반복 수행한 후 평균을 구해 최종 시험 결과로 사용하고자 하였으나, 배 기가스 분석기에 선박 진동의 원인으로 판단되는 이상 거동이 발생하여 실제 시험에서는 2번의 측 정으로 마무리하였다. Table 10은 이번 실선 시험 에서 사용한 실선 운전모드를 나타낸다.

3.3 배기유해물질 배출량 계산

실선에서의 연료 소비량 및 흡기유량, 배기유량 등은 선박 배관 및 설치상의 문제로 인해 직접적 인 측정이 이루어지지 않았다. 대신 Table 4의 엔 진 제조사 제공 엔진 공인시험 결과를 활용하여 실선 시험 시 연료 소모량을 추정한 후 IMO의 NOx Technical Code에 나와 있는 탄소 평형법¹¹⁾을 활용하여 배기유해물질 배출량을 계산하였다.

4. 실험 결과 및 고찰

4.1 배기가스 측정 결과

4.1.1 배기가스 및 배기유해물질 농도 측정 결과 이번 실선 실험에서 엔진 출력과 엔진 회전수 를 Table 10의 운전 조건과 동일하게 운전하고자 하였으나 피치 제어로 운항하는 새바다호에서는 현실적으로 달성 불가능하기 때문에 엔진 회전수 대신 주기관 엔진 출력을 기준으로 하여 대상 선 박에 실선 실험을 하였다. 엔진 출력을 Table 10 과 같이 변경하면서 각 출력 구간 마지막 3분 동 안 측정해 얻은 실선 운전 데이터의 평균값은 Table 11과 같다.

엔진 출력은 Table 10에 있는 목표값을 잘 추종 하였으나 피치 제어의 한계 상 엔진 회전수는 출 력 변화와 함께 낮아져 mode 3, 4의 경우, 약 428 rpm까지 낮아지는 것을 확인할 수 있었다. 기관실 의 온도와 압력은 각각 30℃와 1 bar로 배기가스 측정 기간 동안 일정하게 유지되었으며 흡기압력 의 경우, 출력이 증가할수록 더 많은 공기량을 요 구하기 때문에 함께 증가하는 것을 알 수 있었다. Fig. 4, 5는 본 실선 시험에서 대상 선박인 새바 호를 Table 11의 운전조건에 맞춰 운항하면서 얻 은 배기온도, 배기가스 농도 및 매연 농도 등을 나타낸다.

Fig. 4, 5에서 볼 수 있는 것처럼 시험 시작 후 첫 20분 동안 대상 선박이 운전 조건에 맞춰 원활 하게 운항되었기 때문에 배기가스 농도 및 배기 온도 역시 안정적으로 측정되었다. 이후 두 번째 운전조건(mode 2)에서 세 번째 운전조건(mode 3) 으로 천이 직후 약 4분 여간 엔진 출력 제어에 어

Table 11 Result of Operating for T/S SAEBADA

	Unit	mode 1	mode 2	mode 3	mode 4
Power	kW	2,063	1,547	1,031	516
Speed	rpm	506	468	428	428
Torque	kNm	90	79	56	28
Room Temperat ure	°C	29	29	29	29
Ambient Pressure	kPa	101.3	101.3	101.3	101.3
Relative Humidity	%	29.0	30.0	30.0	30.0
Boost pressure	kg/cm ³	1.2	0.9	0.5	0.1

Fig. 4 Result Measurement of Exhaust Gas Temperature and Nox, CO Emissions

Fig. 5 Result Measurement of CO₂ Emissions, Opacity and Smoke

려움이 발생하였지만 이후 안정화가 이루어지면서 배기온도 및 배기가스 농도가 원활하게 측정되었 으며, 세 번째(mode 3)에서 네 번째 운전조건 (mode 4)으로 천이 직후에도 약 2분간 제어 안정 화 이후 원활한 배기 데이터 측정이 이루어졌다. 첫 번째 운전조건(mode 1)에서 두 번째 운전조건 (mode 2)으로 천이 직후의 데이터는 변화가 없지 만 두번째 운전조건(mode 2)에서 세 번째 운전조 건(mode 3)과 세 번째 운전조건(mode 3)에서 네 번째 운전조건(mode 4)으로 천이 직후에는 배기 데이터가 원활하지 않고 큰 폭으로 변동하는 것 을 알 수 있다. 이는 엔진의 일정부하(엔진 최대 출력의 60% 이상) 이상에서는 연소상태에 별로 영향을 미치지 못하고, 저부하(엔진 최대출력의 50% 이하)에서 부하변동이 되는 순간에는 연료와 공기의 혼합 불안정으로 불완전 연소가 되면서

Table 12 Result Measurement of Exhaust Gas Emissions

	СО	CO ₂	NO	NO_2	NOx	O ₂
Unit	ppm	%	ppm	ppm	ppm	%
mode 1	201.2	6.6	905.7	26.1	936.1	12.4
mode 2	281.6	6.8	909.8	23.3	937.7	12.0
mode 3	349.1	7.0	970.3	22.5	997.4	11.8
mode 4	75.9	5.5	925.4	22.4	952.2	13.8

각 데이터가 변화하는 것을 알 수 있으며, 또 네 번째 운전조건(mode 4)에서는 저부하 운전으로 인 한 배기가스가 감소하여 데이터 결과치가 감소하 는 것을 알 수 있었다.

Table 12, 13은 각 운전모드 마지막 3분간 측정 한 배기 데이터를 평균하여 얻은 배기온도와 가 스상 물질 및 입자상 물질 배출 농도를 나타낸다. 일산화탄소와 질소산화물(NOx) 모두 농도(ppm) 기준 mode 3(엔진 출력 1,081 kW @428 rpm)에서 가장 많이 배출되었는데, 이는 상대적으로 낮은 산소농도로 미루어볼 때 연소실 내 혼합기의 공 연비가 상대적으로 불량하여 연소상태가 좋지 않 은 것으로 판단된다. 배기가스 온도 역시 mode 3 높았으며 Opacity와 에서 가장 스모크(Filter Smoke Number: FSN)의 경우, mode 2, 3에서 가장 많이 배출되었으며 유사한 배출 경향을 보여 주 었다. 이는 연료와 공기 혼합비율이 적정치 못한 연료과다 주입으로 인하여 불완전 연소에 의한 배기가스 온도 상승의 원인으로 판단된다.

질소산화물의 경우, 부하 변동에도 불구하고 900~1,000 ppm 범위로 배출되고 있는 반면 일산 화탄소의 경우, 출력에 따라 약 3.5배 이상, Opacity와 FSN는 25% 이상 최대/최소 배출 농도 차이가 남을 알 수 있었다. 즉, 배기가스의 온도 차이가 30℃ 정도에서는 질소산화물의 농도에는 크게 영향이 없으며, 불완전 연소에 의한 일산화 탄소의 농도에는 영향을 미친다는 것을 알 수 있 었다.

	Opacity	FSN	Exhaust gas Temperature
Unit	%	-	°C
mode 1	1.838	0.174	437.8
mode 2	2.337	0.215	460.8
mode 3	2.365	0.210	474.9
mode 4	2.003	0.152	405.9

 Table 13 Result
 Measurement
 of
 Exhaust
 Gas

 Temperature and Particulate
 Matter
 Emission

Table 13에서 알 수 있듯이 모든 시험 조건에 대해 배기온도는 400℃ 이상으로 추후 해상 실증 시 배기라인에서의 열손실을 고려하더라도 상당 히 고온 조건임을 알 수 있었다. Opacimeter와 Smoke Meter로 각각 측정한 Opacity와 FSN은 모 두 배기가스에 포함된 입자상 물질의 배출량을 측정한 것으로 이번 실선 실험에서는 다소 상이 한 경향을 보인다. 이러한 결과는 Smoke Meter의 경우, 입자상 물질 중 주로 필터에 걸러진 Black Soot(탄소 구조체)만을 측정할 수 있는 반면 Opacimeter는 빛의 감쇠량 측정을 통해 Black Soot 은 물론 응축 탄화수소의 배출량까지 측정 가능 하기 때문에 발생하는 차이로 판단된다.

4.2 배출량 계산

실선 시험에서 측정한 배기물질 농도를 단위 출력당 배출량으로 계산하기 위해 Table 4에 있는 엔진 제조사에서 제공한 엔진 공인시험 결과를 활용하여 얻은 출력에 따른 연료 소모량 추정치 는 Fig. 6과 같다. Fig. 6의 연료 소모량 추정치를 바탕으로 IMO의 NOx Technical Code에 나와 있는 탄소 평형법¹¹⁾을 활용하여 계산한 배기유량 및 단 위 출력당 유해물질 배출량은 Table 14와 같다.

이번 실선시험에서 사용한 새바다호 운항 조건 에서 단위 출력당 NOx 배출량은 Tier Ⅱ 수준으 로 측정되었으며, 그 중에서 특히 mode 4, 즉 25% 출력에서 가장 높은 값을 보였다. 일산화탄소의 경우, mode 3에서 단위 출력당 발생량이 가장 높 게 나타났으며 입자상 물질의 경우, mode 1을 제 외한 나머지 운전 모드에서는 거의 동일한 단위 출력당 배출량을 나타냈다.

Fig. 6 Result of Fuel Consumption and Approximation according to Engine Power

	Unit	mode 1	mode 2	mode 3	mode 4
Fuel flow rate	kg/h	395.73	302.03	214.37	110.61
Exhaust gas flow rate	kg/h	13,241	9,753	6,729	4,401
NO	g/kWh	7.7	7.59	8.06	10.58
NO2	g/kWh	0.22	0.19	0.19	0.26
NOx	g/kWh	7.96	7.83	8.29	10.89
СО	g/kWh	1.24	1.7	2.1	0.63
Smoke	g/kWh	0.012	0.015	0.014	0.014

Table 14 Result of Exhaust Flow Rate and Emissions

새바다호의 엔진 제조사에서 제공한 Table 4와 실험한 Table 14를 비교하면, 각각의 mode에서 나 타낸 엔진 부하, 회전수, 사용한 연료유가 다른 상 태에서 측정이 되었으나 엔진의 노후화와는 관계 없이 검출상의 결과로는 고부하 영역에서보다 저 부하 영역에서 NOx 배출량 등이 상대적으로 많은 것을 공통으로 확인할 수 있었다. 또한 입자상 물 질 배출량의 경우, 350 kW급 디젤엔진(약 0.05 kg/kWh) 대비 약 30% 수준으로 매우 적게 배출되 고 있는데, 이는 우수한 연비를 위해 연소 온도가 상대적으로 높게 설계되어 NOx 배출이 높은 반면 PM 배출은 상대적으로 낮은 예전 엔진들의 특성 이 반영되어 있기 때문으로 판단된다.

5. 결 론

2020년 5월 13일부터 5월 14일 양일간 경상국 립대학교 어업실습선 새바다호를 이용하여 실선 배출가스 측정시험을 실시하였다. 출력 변화를 중심으로 구성한 4가지 모드로 실선을 운항하면 서 가스상 물질, 입자상 물질, 배기 온도 등을 측 정하였으며 연료 소모량은 엔진 제조사 제공 데 이터로부터, 배기유량은 IMO NOx Technical Code에 있는 탄소 평형법을 활용하여 추정, 계산 하였다. 그 결과를 바탕으로 다음과 같은 결론을 얻었다.

시험 결과, 새바다호의 NOx 배출량은 Tier
 □ 수준이었으며, MGO를 사용할 때 HFO를 사용
 할 때보다도 상대적으로 적은 입자상 물질 배출
 이 이루어짐을 알 수 있었다.

2) 유종 및 엔진의 노후화에 관계 없이 고부하 영역에서의 NOx 배출량이 저부하 영역에서보다 상대적으로 적게 배출되는 것을 알 수 있었다. 이 는 연소상태에 따른 것으로 판단된다.

3) 이번 실선 실험에서 mode 2, mode 3에서의 CO 배출값이 mode1과 mode 4의 CO 배출값보다 높았으며, 거기에 따라 FSN의 값도 동일하게 변 화됨을 알 수 있었다. 이는 엔진출력의 40~60% 부하사용 시에 공연비가 불량하여 불완전 연소가 됨을 확인할 수 있었다.

후 기

본 연구는 선박배출미세먼지통합저감 기술개발 사업(20190403)의 재원으로 수행된 연구입니다.

Author contributions

G. S. JO; Conceptualization, Formal analysis, Data curation, Writing-original. M. J. KIM; Experimental system configuration, Formal analysis, Validation. S. H. Han; Project administration, Writing-review & editing.

References

- O. S. Gwon and J. R. Son, 2002, "Ship Diesel Engines, Low-Speed Two-Stroke Crosshead Diesel Engines", Journal of The Society of Naval Architects of Korea, Vol. 37, No. 4, pp. 70-96.
- H. R. Kim, B. G. Kim and S. H. Han, 2020, "The Comparison of Control Characteristics at Two-Stroke Marine Diesel Engine", Vol. 22, No. 6, pp. 1096-1103.
 (DOL 10.17058/Least 22.6.202012.1006)

(DOI:10.17958/ksmt.22.6.202012.1096)

- H. L. Shao, S. Y. Lee, J. H. Doh, D. H. Lee and J. S. Lee, 2018, "Heat Transfer and Thermal Stress Analysis According to Wheel Web Shapes Considering Tread Braking", Journal of The Transactions of the Korean Society of Mechanical Engineers - A, Vol. 42, No. 2, pp. 159-166.
- G. C. Jo, I. C. Kang, J. G. Nam and J. S. Choi, 1997, "A Study on the Optimum Design of Intake System for 4 Cylinder Diesel Engines", Journal of The Transaction of the Korean Society of Automotive Engineers, Vol. 5, No. 5, PP. 104-113.
- D. Byrne, 1987, "Ship Design and Operation for Energy Efficiency (1)", Journal of The Korean Society of Marine Engineering, Vol. 11, No. 3, pp. 12-30.
- T. I. Park, 1998, "IMO Regulations on Emissions from Diesel Engines for Ships and their Countermeasures", Journal of The Society of Naval Architects of Korea, Vol. 35. No. 4, pp. 13-23.
- K. B. Lee, K. W. Oh, T. B. Kim and H. S. Kwon, 2017, "Analysis of Control Region and NOx Reduction Characteristics of NH₃ Direct Injection System (ASDS) and Urea-SCR System", Journal of The Korean Society Of Automotive Engineers, pp. 234-237.

- J. U. Lee and S. H Han, 2021, "Design of Particulate Matter Reduction of the Electrostatic Precipitator with Low Pressure for 300kW Class of Marine Diesel", Journal of Power System Engineering, Vol. 25. No. 1, pp. 60-69. (DOI:10.9726/kspse.2021.25.1.060)
- B. C. Joo, B. J. Rho, K. C. Kim and S. G. Lee, 2000, "An Optimization of the Combustion Parameters for Reducing Exhaust Emissions in a Direct Injection Diesel Engine", Journal of The Transaction of the Korean Society of Automotive Engineers, Vol. 8, No. 5, pp. 78-85.
- J. G. Lim and S. G. Cho, 2000. "A Study on Exhaust Gas Emissions Characteristics of EGR with Scrubber for Marine Diesel Engine", Journal of The Korean Society of Marine Engineering, Vol. 24, No. 2, pp. 207-212.
- J. O. Han, J. M. Chae and D. W. Lee, 2017, "A Study on Fuel Economy Determination of Natural Gas Vehicle Using Carbon Balance Method", Journal of The Korean Institute of Gas, Vol. 21, No. 6, pp. 1-7. (DOI:10.7842/kigas.2017.21.6.1)